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APPENDIX A
EXTENDED COMMUNICATION NETWORK MODEL

Consider a physical structure, such as GNTVT [1], [2] for
monitoring, and the WSN topology, as depicted in Fig. 3.
The structure consists of a number of substructures [3], as
shown in Fig. 3c, represented by Ωq , where q is the maximum
number of substructures. Suppose that we are given a set P
of S homogeneous sensors with limited energy, we need to
form such a WSN denoted by W = (V,E) over the structure.
S sensors are attached to the structure by some location
assignment L = l1, l2, . . . , lS , where sensor su is placed
at location lu. We adopt an SHM-specific sensor placement
model to form the WSN, according to [4] (see Appendix B),
by which we can have sensor nodes like the LDM and DDM
deployed. However, the link quality model of it does not show
sufficient performance for WSN deployment.

We have modified the link quality model regarding dynamic
structural environments (see later part of this appendix). This
adopts the idea of the log-normal path loss model [5], which
is a popular radio propagation model, enabling us to have the
formation of IEEE 802.15.4 links into three distinct reception
regions: connected, transitional, and disconnected. According
to this model, the strength of a radio signal decays with some
power of distance. By following the model, We let Rmin and
Rmax denote the communication range for connected region
and transitional region, respectively. We ignore the the discon-
nected region in our model. We take Rmin as the range that a
sensor can easily communicate with 100% packet transmission
rate (PRR). In our model, any two sensor nodes within a
range of Rmax are predicted to be in communicable range
of each other. We calculate Rmax based on a statistical link
quality on a initial sensor deployment. If a sensor experiences
that its Rmax (due to a long diameter of a substructure) is
more than a threshold value, we attempt to deploy one/two
redundant sensors around of it so that the link quality or PRR
is improved.

After the deployment of all sensors, they are organized into
(possibly overlapping) gi(i = 1, 2, . . . ,K) groups. Each group
contains a subset of sm sensors around a substructure for
monitoring. gi is variable, which relies on the WSN density
and diameter of a substructure. We assume that the number
of groups is equivalent to the number of substructures, say,
q ≡ K. In the WSN, each sensor senses periodically to
get response measurements (i.e., excitation caused by harmful
vibration, heavy wind, load, etc.). Each sensor in a group
works as an LDM. After the first election, one of the LDMs
in the group is elected as a DDM before Td finishes. An LDM
can adjust its Rmin according to the connected region based
on diameter d, as shown in Fig. 3d. At Rmax, a DDM can
connect to its neighbor DDMs or the BS. In MODEM, new
DDMs, but not new groups in the WSNs, are chosen at each

Td to provide fairness. At each Td, a new sensor as a LDM
may join or leave the group due to various environmental and
fault factors, but the group still remains.

A. Wireless Link Model and Link Quality Improvement
As described in Section IVB and earlier, although we have

sensor nodes like LDM and DDM deployed through a previ-
ously recently algorithms [4], such a DDM is assumed to be a
high-end heterogeneous sensor node having additional energy
and is set as a fixed DDM. However, we need homogenous
sensors as the DDMs, and such a sensor is not a fixed DDM
(any sensor has a chance to be a DDM at each data collection
period in MODEM). Thus, a wireless communication link
model should be more realistic than the one we adopt in [4].
Particularly, for a larger network (if planning to monitor a
long-span bridge, subway tunnel, aero-space vehicle, etc.) with
a large number of sensors locations, deploying fixed DDMs or
relay nodes at all potential relay locations will be impractical.

What we need is a model to recognize the characteristics
of the wireless channel in the structural environments so as
to predict feasible links from each sensor to another sensor,
and from each sensor toward the BS. While there can be
many approaches for modeling the link quality, we consider
an improved link quality model considering dynamic structural
environments. We adopt the idea from the log-normal path loss
model [5], which is a popular radio propagation model that
can enable us to have the formation of IEEE 802.15.4 links
into three distinct reception regions: connected, transitional,
and disconnected. According to this model, the strength of a
radio signal decays with some power of distance. By following
the model, we let Rmin and Rmax denote the communication
ranges for the connected region and transitional region, respec-
tively. We ignore the disconnected region in our model. We
take Rmin as the range that a sensor can easily communicate
with 100% packet transmission rate (PRR).

However, using the path loss model, it is difficult to have
more than 40% PRR with Rmax. According to the path
loss model, the signal strength is also summed with random
Gaussian variations. Those random variations make the PRR
irregular in the transitional region that makes it difficult to ana-
lyze the wireless link behaviors. Many times, the PRR appears
less than 20% if sensors are placed with high location quality
according to SHM application deployment requirements [1],
[4]. Thus, there are significant challenges when a sensor node
needs to find Rmax. In our model, any two sensor nodes within
Rmax are predicted to be within a communicable range of
each other. We consider that Rmax vary at different locations,
at different times, and at different deployment environments
(for various structures).

Link quality calculation. We calculate Rmax through
a statistical link quality estimation on the initial sensor de-
ployment. The link quality is estimated in terms of packet
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Fig. A. PTER vs. RSSI measured between two sensors for the CC2420 802.15.4 radio at three different fields, where the packet size is set to 124 bytes.

transmission error rate (PTER). The PTER comes from the
bit error rate, which in turn is obtained by the sensor received
signal strength, its captured noise and interference, and its
modulation-demodulation scheme. During the SHM sensor de-
ployment on the GNTVT, we have verified on-field link quality
experiments with 10 Imote2 sensor platforms, particularly
aiming to observe reliable Rmax at different locations. We
have also carried out similar experiments on the TKB bridge
(actual name is not given do anonymity) (deploying sensors
at different locations of different substructures), and the LSK
building on the university campus [4]. We experimentally
derive the mapping between PTER and RSSI in the case of
the CC2420 802.15.4 radio, as shown Fig. A.

We configure the packet size to be 124 bytes, taking into
account that it may produce high PRR under this packet size
and can normally have high PRR for smaller packet sizes. We
found that the PRR and PTER at any given location is random.
The PTER is below 0.025 or 0.035 for RSSI values that are
larger than -10 dBm, whereas below this RSSI value not only
does the PTER quickly increase, but is highly variable from
sensor to sensor.

From our experience gained through the link quality ver-
ification at different deployments, we find the link model in
terms of Rmax, such that with a transmitter power of 0 dBm,
a receiver at range R that is less than Rmax is very likely to
receive a signal strength better than -86 dBm. The transmitter
power of 0 dBm is chosen so as to minimize the requirement
of DDMs. In the model, we select reliable Rmax by utilizing
existing wireless radio propagation loss models in terms of
(i) the log-distance path loss model with shadowing and a
stochastic fading model (which accounts for multipath fading
and channel variations) [5], [6] We compute three statistical
information factors as follows.

• We find the maximum PTER denoted by Pm, e.g., 0.025,
that is equivalent to a minimum value of RSSI, e.g., −86
dBm.

• The PTER on a given link between any two sensors can
be worse than Pm at some point, since wireless links
can fade over time. At some point, the link can be faded
out. The probability of a multihop path being faded out
increases with the number of hops. We find a threshold
fading out probability, denoted by Pfo. The probability
on a link that the link is not faded out, i.e., P ′

fo is the

fraction of packets received when the value of RSSI is a
minimum value, e.g., ≥ -86 dBm, on the link.

• We set R as the reliable link length, by which two sensors
show more than 90% reliability, R ≤ Rmax. fR is a
function of the link length R, and is defined as the
fraction of links of length R ≤ Rmax that do not have
fading out threshold Pfo. The reason of calculating fR is
as follows: there are average path loss variations in the
transitional region, from link to link due to shadowing
or other related factors. fR is compared to f ′

R (which is
a threshold value). When we have a reliable link by fR,
we can have an unreliable link by estimating 1− fR.

Once we have all values of Pm, Pfo, and FR measured from
a sensor node to another, we can calculate a reliable Rmax as
follows:

Rmax: The range R at which fR ≥ f ′
R.

After LDM has its Rmax to a neighboring LDM and a DDM
around a substructure, the rest of the process for connecting
them is described in Section IIIC. An LDM includes all the
links that are of R ≤ Rmax. In finding this, we can analyze
two factors: (i) the lower the value of fR, the larger the
possibility of reliable link on the field, and this helps to
find a subset of locations with a low link reliability where
a redundant sensor can be placed to improve the low link
reliability to a high link reliability, as well as overall network
performance.

Although existing analytical models such as Rayleigh or
Ricean fading, and log-normal shadowing, can be used to
calculate RSSI or Pm, Pfo, or fR, the relations between
them are indicative that they cannot be used for reliably
characterizing the quality of links in the WSN for highly
dynamic environments. We can conclude that the maximum
range in which the probability of a link is good fR ≥ f ′

R

is chosen as the maximum communication range for reliable
communication.

APPENDIX B
SENSOR PLACEMENT

A very important requirement of SHM is the sensor place-
ment by following CSMA engineering methods. One may
follow the generic WSN sensor placement methods, i.e.,
random, uniform, or grid/tree. We assume that these may not
be suitable for finding high-quality locations where the best
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structural characteristic can be achieved. The sensor nodes
should be placed on critical locations that are of civil/structural
engineering importance. We exactly follow a civil engineering
sensor deployment method, such as EFI (effective indepen-
dence) model for sensor placement [7], which is most widely
accepted method for SHM. In civil engineering, there is a
well-accepted metric in EFI to specify the placement quality:
the Fisher Information Matrix (FIM) determinant.

The main idea of EFI is as follows. When given a set of
candidate locations, the location is sorted according to their
contributions to the FIM determinant. Sensors are placed based
on the FIM contribution. Sensor with the least contribution to
the FIM quality is removed and put it together with other
sensor sensors and place to some other locations where have
the best contribution to FIM so as to improve best placement
quality for monitoring. So a sensor is placed at a location with
the best location quality. We follow a recent WSN-based SHM
scheme focusing on finding the EFI determinant, high-quality
location together with fault tolerance [7].

As modeled in Section IVB, we are given P of S sensors.
We place a small number of redundant sensors so that we
can improve the network connectivity. Let S1 and S2 be the
number of primary and redundant sensors, respectively. Thus,
we have, m ≥ S1+S2, S1 > S2, i.e., we can separate a number
of sensors as redundant sensors from the given sensors before
deployment. As [7], we place S2 sensor at points where the
connectivity is poor, some sensor are isolated, or the location
is not covered so that the network can have strong connection
and coverage.

A structure F has a set of M feasible locations for sensor
placement. S1 primary sensors are deployed on F by finding
candidate locations out of M , using EFI values. After deploy-
ment, S1 sensors can be connected through clusters in a single
to multi-hop WSN one time. For simplicity, we assume that
the deployed WSN with S1 primary sensors is prone to faults
and is weakly connected (i.e., k-connected, (k ≥ 1)), where
sensor i is placed at li. It is highly possible that the network
connectivity is unstable in the structural environment. It is
crucial in SHM, once a set of sensors are deployed, that data
must be collected from each optimal location for SHM. Thus,
data delivery must be fault-tolerant in the WSN.

APPENDIX C
EXTENDED DETAIL OF THE ENERGY COST MODEL

One of the major objectives is to minimize the energy cost
of the WSN. This entails making a decision on an event
detection, getting a confirmation from a DDM, and getting an
acknowledgment as the decision confirmation from the DDM
reaches the BS. A significant amount of energy is also required
in grouping and inter-grouping communications. We consider
an existing energy model, suggested for clustering in a WSN-
based SHM systems [8]. Regarding the model [8], we briefly
describe here how energy consumed in transmitting/receiving
a packet is computed in our case. Let cost(su) be the total
energy cost of a sensor in ith group gi and cost(gi) be the
energy cost of the group of sensors, which is given as follows:

cost(gi) =
n∑

u=1

cost(su)

where cost(su) = Ers(su) + Erc(su) + edm.
We describe the terms as follows.
i) Ers(su) is the energy required by sensing for N data

points; in taking vibration signal measurements, assuming that
there is a maximum 40% overlap, N = (na/2+1/2)·cr, where
na and cr are the number of averages, mainly for denoising
purposes. These basically vary from 10 to 20, and are cross-
correlational factors [8]. na, cr, and N are set by fixed values
on a sensor.

ii) Erc(su) is the energy cost per bit for transmission over
a link between a transmitter and a receiver, which includes the
energy cost for sending and receiving data, and grouping and
inter-grouping communication tasks. Additionally, overhead
for communications is included in the energy cost calculation
for data transmission.

iii) edm is given by (2). To calculate, we initially use an
Imote2 how long it takes to process our decision making
algorithm and the processor frequency for the algorithm. We
then use the same amount of energy in the evaluation.

Note that we have tried to obtain AoED results substructure-
wise (or group-wise) in MODEM. As described, the key
idea behind it is to find a group-wise final decision for each
substructure independently so that the existence of an event
in a specific substructure can be identified by WSNs. In the
energy model, we have tried to figure out the energy cost for
the group that can detect an event. However, the total energy
cost of a WSN definitely comes from the total energy cost of
all the groups of sensors in the network, where each group
consists of a number of sensors.

APPENDIX D
OVERALL PERFORMANCE OF MODEM THROUGH

SIMULATIONS

In simulations in Section VIIIA, we have demonstrated that
MODEM outperforms its counterparts in terms of energy cost
reduction and ability of event detection (AoED). The reasons
as of the performance are as follows.

A. Low Data Transmission through The Consideration of the
Design of CPS.

The existing WSN schemes, DLAC, original ERA, dis-
tributed ERA, SPEM, and MODEM (centralized), which are
considered in our comparison for SHM, primarily target com-
puting system issues (like data acquisition, communication)
or physical structural system issues (like damage or change
event detection). However, the “network performance” of these
schemes can be improved by considering the real situation in
the physical process of the structural event. We provide the
following discussion to support this statement.

Although wired sensors are used to determine the area
of damage event location, it is difficult, if not impossible for
energy and bandwidth constrained wireless nodes to contin-
uously transmit the raw data to the designated recipient. In
order to get an optimal solution, we think of two points:
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TABLE I
DECISION-MAKING BY THE FIRST 15 GROUPS OF SENSORS IN EVERY FIRST ROUND OF 7 SUCCESSFUL SIMULATION RUNS OF MODEM.)

Sensor #
Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

Sim. 1 1 1 0 1 1 0 0 0 0 1 0 1 0 0 1 . . .
Sim. 2 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 . . .
Sim. 3 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 . . .
Sim. 4 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 . . .
Sim. 5 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 . . .
Sim. 6 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 . . .
Sim. 7 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 . . .
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Fig. B. False positive rate in the localized decision-making in MODEM and existing schemes.

1) The situation of the event/change occurrence.
2) The specific substructure (if there is an event).
Hence, we enable the network to reduce its total energy cost

by minimizing the amount of communication and computation
tasks in the network based on the event occurrence in the
substructure. We have provided a computation model in the
CPS. Based on the model, it can be best observed that,
commonly, “no change (e.g., damage)” occurs in a structure.
It can also be argued that, in an unusual situation, if there is an
‘event’ of damage in the structure, the event may first occur
in a substructure of the structure rather than occurring over
the whole structure at a time. Regarding this in a resource-
constrained WSN, the large volume of data really does not
always need to be transmitted to the BS. Instead, a simplified
decision transmission interesting in the case of a “no change”
state. However, if a change has occurred in the structure, in
addition to transmitting a decision on the possible change, a
node may need to transmit all of its collected data towards an
upstream node (cluster head) or the BS upon request. The
nodes may have additional interactions between them. For
example, they need to communicate to the neighboring nodes
in the substructure of the change and to further analyze the data
for ensuing the state of the change. This indicates that a change
in the physical structural system results in extensive com-
munication and computation in the WSN system, especially
between the nodes in the substructure around the change. If
there is no change/event in the structure based on our decision-
making, the sensor nodes can reduce a great amount of energy
cost.

B. Low False Positive Rate Leading High AoED.

There is no further use for frequent data collection and data
transmission if there is no damage event. This can be achieved

by the decision-making in such complex event. A precise
decision, ‘0’ for ‘no damage event’ situation is similar to
‘0/1’ decision in a target detection application of WSNs. This
only needs to exchange local decisions with their neighbors
or the cluster head, except the case that there is an event. If
there is an event, all data are required to be sent. As a result,
the performance in terms of AOED is increased in MODEM
compared to other schemes.

Table I depicts the results of decision-making by the first
15 groups of sensors in every first round in 7 successful
simulation runs in MODEM. Some of the sensor groups in
the neighboring substructures shows ‘1’ decisions. This is
because the damage event information injected into the subsets
of sensors, which participate in different groups in different
simulation runs, while we vary the amount of sensor group
overlap from 20% to 40% when noise ratio. A boundary
sensor, which has data with damage event information, may be
part of the two or more groups. This sensor may provide the
true positive decision (may be ‘1’). However, its neighboring
sensors located at the neighboring substructures may also
have the true positive decision (either ‘0’ or ‘1’ ). These all
decisions are the true positive decisions. However, they are
some false positive decisions: ‘1’ decisions (bold and italic
marked in Table IV). Based on decision-making algorithm, the
the false positive rate is found to be very low (zero in many
simulations). However, in a case that there is a false positive
decision, it is detected at the LDM level in a disturbed manner.
No false positive decision is transmitted to the BS.

Fig. B shows the false positive rate in the decision-making
in MODEM and other schemes. The rate in MODEM is
estimated from the results, gathered from 200 simulation runs.
We also come up with decision-making at a cluster head or
at the BS for other schemes. This figure is evident that some
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schemes such as DLAC, distributed ERA, and SPEM, show
high false positive rate in the decision-making based on the
reduced or whole amount of data collection at the BS. Among
them, the false positive rate in SPEM and DLAC are more than
0.15. There are various reasons for having high false positive
rate, including the following:

• Online decision-making in a round of monitoring under
a fixed time duration Td.

• An excessive amount of data packet losses.
• A loss of an important information during lo-

cal/distributed data reduction process or compression
process.

• The amount of sensor group overlapping.
• Optimal sensor placement for SHM.
• Sensor faults.
The false positive rate (≤ 0.03) in decision-making in

MODEM is close to the false positive rate (≤ 0.02) in
decision-making in original ERA scheme (which is usually
required by the engineering domains).

C. Low Computation Cost

To extract structural properties and make a decision, MO-
DEM takes lower computation cost than algorithms is those
existing schemes take. The computational cost is described in
Section VB.

D. Sensor Placement at High-quality Locations

Sensors are placed at high-quality locations that provide
best estimate of the structural properties that make accurate
decision-making. Besides, redundant sensor placed at points
considering both connectivity and coverage. Thus, these lead
better AoED in MODEM compared to DLAC, SPEM, original
ERA, and distributed ERA.

APPENDIX E
EXTENDED SETUP DETAIL OF PROOF-OF-CONCEPT

SYSTEM DEPLOYMENT ON THE PHYSICAL STRUCTURE

A. Objectives

As proof-of-concept experiments, we have implemented
the MODEM in TinyOS on a SHM mote platform [9]. The
objectives of this implementation are the similar to those of
simulations. Particularly, we intend to validate (i) the AoED
as the QoS in decision-making on an event through embedded
processing capabilities of sensors and (ii) the energy cost of
the network.

B. Methodology

In our implementation, the wireless sensor nodes adopted
are called ‘SHM mote’, as shown in Fig. D. This is a multi-
metric and specialized SHM mote with on-board signal pro-
cessing and embedded decision-making specifically planned
for general SHM applications is designed. Each SHM mote
is integrated with three main hardware components: a sensor
board, an Intel Imote2, and a radio-triggered wakeup with
synchronization module. The Imote2 is with an AM radio
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Fig. D. (a) An integrated Imote2 (SHM mote) used in our experiments; (b)
Twelve-story test building structure and the placement of 10 SHM motes on
it; (c) sensor grouping; (d) DDM selection.

receiver for synchronized sensing and a RF amplifier. It is
built around the low-power PXA271 processor and 802.15.4-
compliant radio (Chipcon CC2420) with a built-in 2.4GHz
antenna. It has 256 KB of embedded SRAM and can address
32 MB of on-board SDRAM,providing plentiful space for
data-intensive SHM. For a structure with ‘no event of damage’,
each mote keeps 20 to 22 bytes of data, but removes other
data after each Td. The model-based localized decision-making
algorithm is successfully embedded on the Imore2. The fact
that the proposed decision-making in this report does not take
much computation, the PXA271 speed is scaled down, which
allows for an increased performance and energy cost reduction.

In our implementation, we get a very useful from a ISHMP
toolsuite (http://shm.cs.uiuc.edu/), which provides subsystems
for sensor data acquisition and reliable data transmission.
The SHM motes run modified TinyOS, and are configured
to sample the accelerometers in a synchronized manner at a
frequency of 560Hz. We modify the radio-related components
in TinyOS 2.0 for time-stamping the packet close to the
transmitter. This makes the time-stamping as close as possible
to the first byte transmission, and the first byte reception of
the packet. This eliminates the transmission and reception
time delays for the data packet. When a mote receives an
ACK (acknowledgment) that the data packet is received by
an upstream mote (i.e., DDM), then data is removed from the
buffer, except for the last set of data that remains in the buffer
before monitoring period is over. To carry out our localized al-
gorithms, the network architecture is homogeneous; however,
the functions vary when their role changes as an LDM, DDM
or BS.

The general sensor board has digital accelerometer with
analog input applications. The Imote2’s 3D accelerometer has
a resolution of 12-bit, or equivalent 0.97 mg with 3-axis
of measurement and ±2g of amplitude. The AD converter
has also digital filters with user-defined cutoff frequencies.
Specifications for the accelerometer explain that once the
decimation factor is defined, the sampling frequency and
corresponding cutoff frequency will have a value within ±10%
of the value given.
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C. System Deployment

A twelve-story shear frame structure is employed, as shown
in Fig. D(b). The lateral stiffness of each floor originates
from the four vertical steel columns, 3.81cm by 3.81cm. The
twelve-floor structure is shared into two substructures with
each having at least four floors. 10 SHM motes are deployed,as
shown in Fig. D(b). We consider two substructures of the test
structure, where each substructure includes at least 4 floors.
In the middle of each substructure considered as the reference
sensor point. In the experiment, Rmin and Rmax is are set
according to d of each substructure and to the distance between
the reference sensor point and the BS’s location, respectively.
It is not difficult to adjust since Imote2 supports discrete
levels of range (Rmin to Rmax). We choose this so that at
a maximum power level, all nodes can talk directly to each
other with in a substructure (group-wise).

Under this transmission power level, the topology of the
network along with the simplified structure is illustrated in
Fig. D(c). Under Rmin, the topology of the network along with
the physical structural elements is illustrated in Fig. D(d). All
of the SHM motes organized them into groups according to
the reference sensor point location on the structure. All of the
SHM motes are programmed with the code for the embedded
algorithm and recording group information according to the
SOSO algorithm. At the start of the procedure, the BS node
propagates a configuration packet to all other nodes in the
network.

An extra additional mote is used as the BS node (the
remote SHM mote) that is connected to the PC via USB for
the control purpose, while this BS node can be removed in
future implementation. Java application and MATLAB scripts
running on the PC, which are used to set initial command
and parameters and functions on SHM motes. For debugging
purposes, our system can also retrieve the last set of raw sensor
readings from individual mote, which is left after T finishes.
To produce a sizable vibration response from the test structure,
we collect the original data by vertically exciting the test
structure using a magnetic shaker for continuous and modal
hammer for instant excitations, which yield reasonably higher
structural system responses compared to a real structure.
Moreover, in order to obtain realistic results, enough excitation
is injected into system to get measurements with a good signal-
to-noise ratio. In fact, this excitation level yields reasonably
high structural responses that are measured compared to a real
high-rise structure or bridge.

APPENDIX F
FURTHER SYSTEM DEPLOYMENT ON AN OUTDOOR

STRUCTURE

A. Objectives

As further proof-of-concept experiments on an outdoor
structure, we have conducted experiments on the LSK building
located at our university campus, as shown in Fig. E.1 (the ac-
tual names are anonymous). The objective of this deployment
is to validate the feasibility of the decision-making and SOSO
algorithms of MODEM. We particularly intend to observe how
MODEM performs in practice.

Fig. E.1. Sensor deployment on LSK building: (a) an example of FEM model
where 22 SHM mote are placed; (b) BS mote location; (c) the placement of
a sensor.
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5th) in its different rounds of monitoring.

B. Methodology

We use system configurations similar to the configurations
used in our experiments on the lab-based structure. In this
deployment, we have selected 22 locations for 22 SHM motes
that seem to capture the overall vibration frequency and mode
shapes of the structure. We deploy the system three times in
three different days and estimate average results.

Similar to the damage event information injection into
data traces of sensors during the simulations, or the physical
damage event injection into the lab-based structure, we do
not have access to inject physical damage event in the LSK
tower building. It is not feasible to get real damage event in
a healthy structure. Instead, we have used a magmatic shaker
to excite the structure around some sensor locations, namely
the sensor located at the 5th floor and the 9th floor. We think
the excitation level captured by those sensors should be higher
than other sensors, which can be considered a lower strength
of event detection. Recall that similar case may occur during
the incidents of earthquake, hurricane, heavy wind, and so
on. As a result, the system should be able to detect such an
event that has minimum changes in the dynamic process of
the structure.

C. Experimental Results

We first have a look at the decision-making by the 5th LDM
sensor in different rounds of monitoring in Fig. E.2. We can
see that 5th the sensor makes a false positive decision at round
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Fig. E.3. Experimental WSN performance: decision-making by all of the
sensors in the WSN in a round of monitoring.
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Fig. E.4. Experimental performance: the AoED obtained from five rounds of
monitoring operation.

5. However, the final decision came from the the first group of
sensors are true positive. Such a single false positive decision
cannot deviate the systems from making true positive decision
at the DDM (group-wise). If it is false decision (caused by
faults, interferences, other related reasons), the false decision
can be detected at the LDM when fusing the decisions from
all the sensors. Even, in the immediate round of monitoring,
such a false positive decision is not seen further at 5th sensor
and its neighboring sensors.

Fig. E.3 presents the decisions of all of the sensors of four
groups. Fig. E.4 depicts the experimental AoED from five
rounds of monitoring operation. It shows that MODEM can
provide a sufficient level of AoED under the forced vibration
excitations. This implies that MODEM has the ability of those
event detection, such earthquake, hurricane, heavy wind, load,
etc. The maximum AoED is 38% obtained by some sensors
in some group in case of such a low level event. Note that if
there occurs a real event of damage in such the structure, the
AoED will be increased, similar to the AoED achieved in the
lab-based structure.

REFERENCES

[1] B. Li, D. Wang, F. Wang, and Y. Q. Ni, “High quality sensor placement
for SHM systems: Refocusing on application demands,” in Proc. of IEEE
INFOCOM, 2010, pp. 1–9.

[2] Y. Ni, Y. Xia, W. Liao, and J. Ko, “Technology innovation in developing
the structural health monitoring system for Guangzhou New TV Tower,”
Struct. Cont. and Health Monit., vol. 16, no. 1, pp. 73–98, 2009.

[3] Z. Xing and A. Mita, “A substructure approach to local damage detection
of shear structure,” Structural Control and Health Monitoring, vol. 19,
no. 2, pp. 309–318, 2012.

[4] M. Z. A. Bhuiyan, G. Wang, J. Cao, and J. Wu, “Sensor placement with
multiple objectives for structural health monitoring,” ACM Transactions
on Sensor Networks, vol. 10, no. 4, pp. 1–45, 2014.

[5] Y. Chen and A. Terzis, “On the implications of the log-normal path loss
model: An efficient method to deploy and move sensor motes,” in Proc.
of ACM SenSys, 2011, pp. 26–39.

[6] T. S. Rappaport, Wireless Communications: Principles & Practices.
Prentice Hall, 1996.

[7] M. Z. A. Bhuiyan, G. Wang, J. Cao, and J. Wu, “Deploying wireless
sensor networks with fault tolerance for structural health monitoring,”
IEEE Transactions on Computers, vol. 64, no. 2, pp. 382–395, 2015.

[8] X. Liu, J. Cao, S. Lai, C. Yang, H. Wu, and Y. Xu, “Energy efficient
clustering for WSN-based structural health monitoring,” in Proc. of IEEE
INFOCOM, 2011, pp. 2768 – 2776.

[9] TinyOS documentation. [Online]. Available:
http://docs.tinyos.net/tinywiki/index.php/T2 on Imote2


